
DB

Introduction to Proteus Digital Bridge
Proteus DB provides a simple and convenient way to
connect your digital systems to the cloud. With a json
data structure, you can send data on multiple nodes in
a single shot to the cloud. You can also set your own
key value pairs on the cloud to update specific values
on your system.

Emails, Calls, Text Alerts
You can add your phone numbers, multiple emails
to the notification list. No matter where you are,
you can be in the know when one or more of your
data nodes go to alarm.

Testing Your Sensor
After the installation is complete, depending on the
type of load you are monitoring, read further on
how to configure the settings, and test your sensor.

G
N

D
TXR

X

Your
Electronics

TX R
X

G
N

D

Connections
Proteus DB comes with a 4 contact terminal block
interface. This provides contacts for Ground, TX and
RX lines for the UART communication line between
your board and Proteus. Leave the 4th wire
disconnected.

Voltage Rating
Proteus DB runs on a 3.3V system. It is best if your
UART lines operate on 3.3V as well. Proteus can
handle upto 5V DC, though it is recommended to have
a level shifter to ensure reliable and stable
communication.

Data
Data must be send in JSON format through the uart.
The keys are mandated by Proteus. You can set your
values which can be letters, numbers or a combo. To
ensure sanity of data transmission, encoding and
decoding , we strongly recommend against use of
special characters in the data payload. See sample
cases in next page.

DB

Baud Rate
For your convenience, Proteus supports multiple baud
rates that can be configured via the web interface. The
default baud rate is set at 19200. Other options include
4800, 9600, and 38400.

When you have a single data node

Following is the data structure when you have just a
single data node.

For example: If you are monitoring a node that just
has a Normal and Alarm Status, then you don’t need
to provide any data or units. Your data node could
look like

The ID key is also optional that you could use to keep
track of your monitored nodes.

There are 3 mandatory keys required for each sensor
node you wish to monitor.

A. name
This key defines the name of your node. Proteus
uses for display on the cloud, form alarm messages
as well as for verbose data and alarm logs.

Name can be any alpha numeric string.

B. status
This key defines whether this specific sensor node is
in Alarm or OK state. Hence only two states are
supported for this key, “Alarm” or “OK”.

C. desc
This key is a descriptive word (preferably one word)
that makes more sense to the status key. For eg:
Let’s take the case of the AC Line Voltage Monitor.
When status is “OK” you can set “desc” as “Normal”
or “OK”. If the Line voltage is reading 105.4, You can
set “desc” as “Low”. Alternatively, if the voltage is
reading 117.2, you can set “desc” as “High”.

Proteus uses the desc key along with name key to
form alarm messages and display tags on the cloud.

Data Structure
You can send Data corresponding to one ore more
elements in your system. Simply encode them in the
correct format, send it to UART and Proteus will take
care of it from there on.

{
"SensorList": [
 {

"id": "101",
"data": 110.5,
"unit": "V",
"name": "AC Line Voltage",
"status": "OK",
"desc": "Normal"

 }
]

}

Contents inside the red dashed box represents data
corresponding to a single data element that you want
to monitor. Let’s dive deep into this single node.There
are few keys that in each node that are required
(indicated in RED), and few that are optional (indicated
in GREY).

"id": "101",
"data": 110.5,
"unit": "V",
"name": "AC Line Voltage",
"status": "OK",
"desc": "Normal"

{
"SensorList": [
 {

"name": "AC Line Voltage",
"status": "OK",
"desc": "Normal"

 }
]

}

Mandatory Keys

DB

When you have a multiple data nodes

It is easy to add more data nodes to the payload.
Simply add them enclosed in paranthesis as a json node
array. See example below..

{
 "SensorList": [{

"kvPairs":"var1=val1&var2=val2",
"data": 12.5,
"unit": "Ft",
"name": "Tank Water Level",
"status": "Alarm",
"desc": "High"

 },{
"name": "Battery Voltage",
"status": "OK",
"desc": "Full"

 },
 …….
 {

"name": "Fuel Level",
"status": "OK",
"desc": "Normal"

 }]
}

Node#1

Node#2

Node#n

More nodes

Positioning of the nodes.

It is important to note that you must maintain the
position of the nodes consistently. For example, if
you have Water Level Data as the first node, and
Battery Level as the second node, It is recommended
that you maintain the order of the nodes between
consecutive transmission. This is because Proteus is
blind to the content of your data. It looks at the
position of each node, and extracts specific keys for
display and alerts purposes. If you switch positions
of the data nodes, display and alerts would still work
fine, but data logging and graphing functions would
get mixed up as they rely on the position
information as well.

There are also optional non- mandatory keys that
you can use for each sensor node.

A. id
This key defines an internal ID for your node.
Proteus currently does not rely on this ID.

id can be any alpha numeric string.

B. data
This key defines numeric data if a particular sensor
node generates numeric data. If present, will be
used for display, logs, graphs, alarm messages, etc.

C. unit
This key defines the unit for the numeric data. If
present, will be used for display, logs, graphs, alarm
messages, etc.

D. kvPairs
In an attempt to be purely client agnostic, Proteus
 also lets you define your own variables and their
values that can be passed back to your system. This
means that you can set key value pairs on the cloud
and update their values on the go. Any changes on
these values will prompt the cloud to sync them
back to your system. You can use them to adjust
thresholds, timers, delays or pretty much anything
you want.

When you connect a new sensor, the cloud has no
clue to your system variables that you may want to
update. While you can always manually add key
value pairs on the cloud, Proteus goes one step
further. You can include a kvPairs key with any one
sensor node that contains all variables for your
system, just once. Proteus will use this to initialize
the variables and values so you don’t have to do it
for each sensor. Eg:

“kvPairs”:”var1=val1&var2=val2&…”

E. Proteus may add support for additional nodes in
future, and ignores any nodes that it does not
expect.

Non-Mandatory Keys

DB

Cloud Interface

The cloud interface is very similar to the other
sensors with minor differences in the data
presentation. Since there could be one or more
sensors present on each unit, the bubble indicator
will not show data from each sensor, but rather
show the status of the sensor in general. If any of
the sensor nodes are in “Alarm”, the bubble will
indicate an alarm state, and if all sensors are “OK”,
then the bubble will indicate OK.

There are different ways to test your sensor payload.
You can test them locally by printing on to your
system output stream for one. To see the actual data
being sent, you can also short out the TX and RX on
your system and read on TX line what you send out
on your RX line.

Once you have your UART lines connected to
Proteus, Proteus will do a sanity check on the data. If
it finds any structural errors, it will not be able to
parse the data and will send an Error String back to
your system. This would look like “Error=0x01”.
More error codes will be added in future.

With data being sent properly, you can check the
data either on the local web server from Proteus by
simply typing the IP address of the sensor in a web
browser. The home page will display each node by
its name and status. If a node contains data, then
the data will be displayed. If not, the status will be
displayed.

Want to see the JSON Data, Simply click CTRL + “.”
(Period) Key to view the raw payload displayed on
the screen.

Testing your data payload

Tank Water Level 12.5 Ft
Battery Charge Full
Fuel Level Half

Hello Message, Data Frequency

Proteus does not initiate a data request to the UART
client. It is the client who must send data to Proteus.
The client can decide the frequency at which data is
sent. Until new data arrives, the last received
payload will be treated as the live data. Also, Proteus
does not store your data locally. This means that if
there is a power outage or a restart due to network
error or any other reason, or even a normal power
on event, Proteus will send “ERROR=0x00” to the
client. When the client gets this message, It means
Proteus has just turned on or rebooted, and has no
data so far. The client can treat this as a request to
send a data payload.

Uart Client Status

Proteus has built-in option to notify you if power or
wifi goes down. You can customize the delay time
after which you wish to be notified. Since the uart
client is a completely independent system that
Proteus has no control over, we have extended the
sensor down monitoring option to the uart client. If
the uart client stops sending data to Proteus for
more than the time specified on the settings tab,
you can get notified. You will also be able to see on
the cloud the time stamp of when the last data was
sent from uart client to Proteus.

DB

You can set your own variable names and their
values on the cloud. You update the values, save
settings and these values will be synced with
Proteus.

Proteus will then pass it own to the uart client
formatted as a post data string.

Setting Key Value Pairs

kvPairs=1&waterMinLevel=5&waterMaxLevel=25&fu
elMin=2&fuelMax=14&name=Master Controller&..

Programatically request for key value pairs

The uart client can also make requests to the Bridge.
A request for key value pairs can be made by
sending the following command. It is important to
keep the array structure inside the json request.

{“Request”:[
{”kvPairs”:1}
]

}

Proteus will respond back with the key value pairs in
the same format as above.

If your system is not generating any new data that
you need to send to Proteus cloud, you can use the
“Ping” Mode. In this mode, you can add a sensor
array entry as follows.

Ping/ Minimal Data Mode

We plan to add more features moving forward,
while keeping the system as agnostic as possible to
the type, design and structure of the uart client. If
you are looking for a specific feature, feel free to
drop us a line at support@proteussensor.com.

More features

{
 "SensorList": [{

"name": "Ping",
"status": "OK"

 },
 {

"name": "Battery Voltage",
"status": "OK",
"desc": "Full"

 },
 …….
 {

"name": "Fuel Level",
"status": "OK",
"desc": "Normal"

 }]
}

Ping
Packet

Optional

Node#n

More nodes

If ping packet is included, It is not necessary to
include any other sensor information. The cloud will
ignore any sensor specific data and only update the
‘Live’ status of the client.

	Proteus DB - Installation Guide.vsd
	Page-1
	Page-2
	Page-3
	Page-4
	Page-5

